Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(13): e4712, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37449033

RESUMO

Highly multiplexed protein measurements from multiple spatial scales using fluorescence microscopy recently emerged as a powerful way to investigate tumor microenvironments in biomedicine and the multivariate nature of complex systems' interactions. A range of methods for this exist, which either rely on directly labeling the primary antibody with oligonucleotides/rare metals or employing methods to remove fluorescence for cyclic acquisition. Here, we describe a protocol that uses off-the-shelf primary and secondary antibodies without further need for modification and only commonly available chemical reagents. The method harnesses the observation that antibodies can crosslink to bound epitopes during light exposure, thus preventing elution. By utilizing a simple oxygen radical scavenging buffer during imaging and by blocking free sulfhydryl groups before antibody incubation, the presented method can employ comparably mild conditions to remove bound antibodies from epitopes, which preserves sample integrity. Thus, with the stated minor modifications, it allows for a standard immunofluorescence imaging protocol in cyclic fashion, currently permitting staining of up to ~80 unique epitopes.

2.
Science ; 377(6606): 642-648, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857483

RESUMO

Individual cells make decisions that are adapted to their internal state and surroundings, but how cells can reliably do this remains unclear. To study the information processing capacity of human cells, we conducted multiplexed quantification of signaling responses and markers of the cellular state. Signaling nodes in a network displayed adaptive information processing, which led to heterogeneous growth factor responses and enabled nodes to capture partially nonredundant information about the cellular state. Collectively, as a multimodal percept this gives individual cells a large information processing capacity to accurately place growth factor concentration within the context of their cellular state and make cellular state-dependent decisions. Heterogeneity and complexity in signaling networks may have coevolved to enable specific and context-aware cellular decision-making in a multicellular setting.


Assuntos
Transdução de Sinais , Análise de Célula Única , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos
3.
Cell Syst ; 6(6): 664-678.e9, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29886111

RESUMO

Extracellular growth factors signal to transcription factors via a limited number of cytoplasmic kinase cascades. It remains unclear how such cascades encode ligand identities and concentrations. In this paper, we use live-cell imaging and statistical modeling to study FOXO3, a transcription factor regulating diverse aspects of cellular physiology that is under combinatorial control. We show that FOXO3 nuclear-to-cytosolic translocation has two temporally distinct phases varying in magnitude with growth factor identity and cell type. These phases comprise synchronous translocation soon after ligand addition followed by an extended back-and-forth shuttling; this shuttling is pulsatile and does not have a characteristic frequency, unlike a simple oscillator. Early and late dynamics are differentially regulated by Akt and ERK and have low mutual information, potentially allowing the two phases to encode different information. In cancer cells in which ERK and Akt are dysregulated by oncogenic mutation, the diversity of states is lower.


Assuntos
Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/fisiologia , Linhagem Celular , Citosol/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
4.
Sci Signal ; 9(413): ra13, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838549

RESUMO

The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the MAPK kinase MEK and its targets extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes and the transformed keratinocyte cell line HaCaT A5 exposed to either hepatocyte growth factor or interleukin-6. By combining quantitative mass spectrometry with dynamic modeling, we elucidated network structures for the reversible threonine and tyrosine phosphorylation of ERK in both cell types. In addition to differences in the phosphorylation and dephosphorylation reactions, the HaCaT network model required two feedback mechanisms, which, as the experimental data suggested, involved the induction of the dual-specificity phosphatase DUSP6 and the scaffold paxillin. We assayed and modeled the accumulation of the double-phosphorylated and active form of ERK1/2, as well as the dynamics of the changes in the monophosphorylated forms of ERK1/2. Modeling the differences in the dynamics of the changes in the distributions of the phosphorylated forms of ERK1/2 suggested that different amounts of MEK activity triggered context-specific responses, with primary hepatocytes favoring the formation of double-phosphorylated ERK1/2 and HaCaT A5 cells that produce both the threonine-phosphorylated and the double-phosphorylated form. These differences in phosphorylation distributions explained the threshold, sensitivity, and saturation of the ERK response. We extended the findings of differential ERK phosphorylation profiles to five additional cultured cell systems and matched liver tumor and normal tissue, which revealed context-specific patterns of the various forms of phosphorylated ERK.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Linhagem Celular Transformada , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA